

Module 7: Turing Machines and Computability
This module represents a pivotal moment in our exploration of the theoretical limits of
computation. Having studied finite automata (with no memory beyond their current state) and
pushdown automata (with a single stack), we now introduce the Turing Machine (TM), a
theoretical model of computation that is considered the most powerful and general model
conceived. The Turing Machine provides a formal, abstract representation of an algorithm
and serves as the bedrock for the modern theory of computability. We will meticulously
define its components and operations, demonstrate its functionality with solved examples,
discuss the profound implications of the Church-Turing Hypothesis, and delineate the
crucial concepts of decidability and Turing recognizability, which define the boundaries of
what computers can and cannot do. Finally, we will examine the closure properties of these
language classes, illustrating with further examples where appropriate.

Modeling Computation using Turing Machines (TM)

While finite automata could model simple pattern recognition and pushdown automata could
handle hierarchical, nested structures, both possessed inherent limitations related to
memory. Finite automata had no auxiliary memory, and pushdown automata were restricted
to a single, last-in-first-out (LIFO) stack. These limitations mean they cannot solve problems
that require arbitrary amounts of sequential memory or the ability to read and rewrite
anywhere in that memory.

The Turing Machine (TM), conceived by Alan Turing in 1936, overcomes these limitations
by introducing an infinitely long tape that serves as its memory. This simple yet powerful
addition allows the TM to simulate any algorithmic process. It is not intended as a practical
model for building computers, but rather as a theoretical abstraction to understand the
fundamental capabilities and limitations of computation itself.

A Turing Machine (TM) is formally defined as a 7-tuple (Q,Σ,Γ,δ,q0 ,qaccept ,qreject), where:

● Q (States): A finite, non-empty set of internal states. These states represent the TM's
current configuration or phase of computation, similar to states in automata.

○ Example: q_start, q_read, q_write, q_found_match.
● Σ (Input Alphabet): A finite, non-empty set of input symbols. These are the symbols

that can appear in the initial input string placed on the tape.
○ Example: {0,1}, {a,b,c}. Crucially, the blank symbol _ is never part of the input

alphabet.
● Γ (Tape Alphabet): A finite, non-empty set of symbols that can be written onto the

tape. This set includes all input symbols and a special blank symbol.
○ Requirement: Σ⊆Γ.
○ Special Symbol: _ (blank symbol). This symbol is a member of Γ but not Σ. It

represents an empty cell on the tape. The tape is initially filled with blanks
everywhere except where the input string is written.

● δ (Transition Function): This is the core of the TM's operation. It dictates the TM's
behavior at each step. Unlike DFAs or NFAs, the TM's transition depends on the

current state and the symbol under the tape head. For a given (current state, tape
symbol under head) pair, it specifies:

○ A new state to transition to.
○ A symbol to write onto the current tape cell (replacing the symbol just read).
○ A direction to move the tape head (Left or Right).
○ Formally, δ:Q×Γ→Q×Γ×{L,R}

■ L means move the tape head one cell to the left.
■ R means move the tape head one cell to the right.

○ Deterministic: This definition describes a deterministic Turing Machine. For
any given (state, symbol) pair, there is exactly one possible action.

● q0 (Start State): The unique initial state from Q where the TM begins its
computation.

● qaccept (Accept State): A designated state from Q. If the TM enters this state, it
immediately halts and accepts the input string.

● qreject (Reject State): A designated state from Q. If the TM enters this state, it
immediately halts and rejects the input string.

○ Important: qaccept and qreject must be distinct states (qaccept =qreject). If a
TM reaches either of these states, it halts. If it never reaches either, it runs
forever (loops).

Components of a Basic Turing Machine:

1. Tape: An infinitely long strip, divided into cells. Each cell can hold exactly one symbol
from the tape alphabet Γ. The tape extends infinitely to the right (and often
conceptualized as infinite to the left as well, or at least arbitrarily extendable). Initially,
the input string occupies the leftmost portion of the tape, and all other cells are filled
with the blank symbol _.

2. Tape Head: A mechanism that can read a symbol from a cell, write a symbol to a
cell, and move left or right one cell at a time. It always points to a single cell on the
tape.

3. Control Unit: The "brain" of the TM. It is in one of a finite number of states. Based
on its current state and the symbol read by the tape head, it consults the transition
function δ to decide:

○ What symbol to write onto the tape.
○ What direction to move the tape head.
○ What its next internal state will be.

Basic Operation (Step-by-Step Execution):

1. Initialization: The input string is placed on the leftmost portion of the infinite tape. All
other tape cells are filled with the blank symbol _. The tape head is positioned at the
leftmost symbol of the input string. The control unit is in the start state q0 .

2. Execution Cycle (Loop): The TM repeatedly performs the following actions:
○ Read: The tape head reads the symbol currently in the cell it is pointing to.
○ Consult Transition Function: The control unit takes its current state and the

symbol just read as input to the transition function δ.

○ Write, Move, Change State: Based on the output of
δ(current_state,symbol_read)=(new_state,symbol_to_write,direction_to_move
):

■ The symbol_to_write is written onto the current tape cell.
■ The tape head moves one cell in the specified direction_to_move

(L or R).
■ The control unit transitions to the new_state.

○ Check for Halting: If the new_state is qaccept or qreject , the TM halts.
3. Halting Conditions:

○ Acceptance: If the TM enters state qaccept , it halts and the input string is
considered accepted.

○ Rejection: If the TM enters state qreject , it halts and the input string is
considered rejected.

○ Looping: If the TM never enters qaccept or qreject , it continues to run
indefinitely (loops). In this case, the input string is neither accepted nor
rejected; it simply causes the machine to "hang."

Solved Question 1: TM for L={0n1n∣n≥1}

Problem: Design a Turing Machine that recognizes the language consisting of strings with
an equal number of 0s followed by an equal number of 1s, where n≥1. Example strings: 01,
0011, 000111.

Strategy: The TM will repeatedly "check off" a 0 and a 1.

1. Scan right, find the leftmost 0. Mark it with an X.
2. Scan right past all 0s and Xs, find the leftmost 1. Mark it with a Y.
3. If a 0 was found but no 1 (or vice versa), reject.
4. Scan left to find the rightmost X. Move one cell right to find the first unmarked

symbol.
5. Repeat until all 0s and 1s are marked.
6. After marking all 0s and 1s, scan the tape to ensure only Xs, Ys, and blanks remain

(i.e., no unmatched 0s or 1s). If so, accept.

Formal Definition: Q={q0 ,q1 ,q2 ,q3 ,q4 ,qaccept ,qreject } Σ={0,1} Γ={0,1,X,Y,_} q0 : Start state
qaccept : Accept state qreject : Reject state

Transition Function δ (Rules):

● From q0 (Initial state, finding leftmost 0):
○ δ(q0 ,0)=(q1 ,X,R) : If 0 is read, mark it X, move right to find a 1, go to q1 .
○ δ(q0 ,Y)=(q4 ,Y,R) : If Y is read, it means all 0s have been matched and

marked X. Now check if only Ys and blanks remain (i.e., balanced). Move
right, go to q4 .

○ δ(q0 ,_)=(qreject ,_,R) : If blank is read, it implies empty string or no 0s to start,
which is not 0n1n for n≥1. Reject.

○ δ(q0 ,1)=(qreject ,1,R) : Cannot start with 1. Reject.
● From q1 (Found 0, now looking for 1):

○ δ(q1 ,0)=(q1 ,0,R) : Skip over 0s.
○ δ(q1 ,Y)=(q1 ,Y,R) : Skip over already marked 1s (Ys).
○ δ(q1 ,1)=(q2 ,Y,L) : If 1 is read, mark it Y, move left to find the X (to return to

start of next 0), go to q2 .
○ δ(q1 ,_)=(qreject ,_,R) : If blank is read, found 0s but no matching 1s. Reject.

● From q2 (Found 1, returning to find next 0):
○ δ(q2 ,0)=(q2 ,0,L) : Skip over 0s while moving left.
○ δ(q2 ,Y)=(q2 ,Y,L) : Skip over Ys while moving left.
○ δ(q2 ,X)=(q0 ,X,R) : If X is read, found the marked 0, move right to start the

next iteration (find next unmatched 0). Go to q0 .
● From q3 (Error/Reject state - not explicitly used in this simplified direct path,

implies implicit rejection if rule not defined):
○ (Any other unlisted (state, symbol) pair from q0 ,q1 ,q2 implicitly leads to

qreject or causes the TM to halt if no transition is defined for that state-symbol
pair)

● From q4 (All 0s matched, verifying no 1s remain unmarked):
○ δ(q4 ,Y)=(q4 ,Y,R) : Skip over Ys (marked 1s).
○ δ(q4 ,_)=(qaccept ,_,R) : If blank is read, means all 0s and 1s were perfectly

matched. Accept.
○ δ(q4 ,0)=(qreject ,0,R) : Found an unmatched 0. Reject.
○ δ(q4 ,1)=(qreject ,1,R) : Found an unmatched 1. Reject.

Trace for input 0011: Tape content: _0011___ (head on first 0, state q0)

1. (q0 ,0)→(q1 ,X,R) _X011___ (head on second 0, state q1)
2. (q1 ,0)→(q1 ,0,R) _X011___ (head on first 1, state q1)
3. (q1 ,1)→(q2 ,Y,L) _X0Y1___ (head on 0, state q2)
4. (q2 ,0)→(q2 ,0,L) _X0Y1___ (head on X, state q2)
5. (q2 ,X)→(q0 ,X,R) _X0Y1___ (head on 0, state q0)
6. (q0 ,0)→(q1 ,X,R) _XXY1___ (head on Y, state q1)
7. (q1 ,Y)→(q1 ,Y,R) _XXY1___ (head on 1, state q1)
8. (q1 ,1)→(q2 ,Y,L) _XXYY___ (head on Y, state q2)
9. (q2 ,Y)→(q2 ,Y,L) _XXYY___ (head on X, state q2)
10. (q2 ,X)→(q0 ,X,R) _XXYY___ (head on Y, state q0)
11. (q0 ,Y)→(q4 ,Y,R) _XXYY___ (head on Y, state q4)
12. (q4 ,Y)→(q4 ,Y,R) _XXYY___ (head on _, state q4)
13. (q4 ,_)→(qaccept ,_,R) Accept!

This example clearly shows how the TM uses its tape to mark symbols and move back and
forth to keep track of its computation, a capability beyond that of PDAs.

Equivalent Models of Computation

The simple, single-tape, deterministic Turing Machine described above is remarkably
powerful. So powerful, in fact, that numerous other theoretical models of computation,
seemingly more powerful or different in structure, have been shown to be equivalent to the
basic Turing Machine. This means that any computation that can be performed by one of
these alternative models can also be performed by a standard TM, and vice-versa. This
robust equivalence lends significant weight to the Turing Machine as the definitive model of
general computation.

Here are some common equivalent models and why they don't surpass the basic TM:

1. Multi-Tape Turing Machine:
○ Description: Instead of one tape, a multi-tape TM has several independent

tapes, each with its own read/write head. At each step, the control unit reads
symbols from all heads, makes a transition, writes symbols on all tapes, and
moves all heads independently.

○ Equivalence: A single-tape TM can simulate a multi-tape TM.
■ Simulation Idea: The single tape can be thought of as having multiple

"tracks" for each of the multi-tape TM's tapes. For example, if a
multi-tape TM has k tapes, the single tape could be divided into 2k
tracks: k tracks for the content of each tape, and k tracks to mark the
head positions on each of those k tapes.

■ To simulate a step: The single-tape TM scans its tape from left to right,
remembering the symbols under each of the k simulated heads and
their positions (stored on a separate "head position" track or by
marking). Once all k symbols are read, the single-tape TM determines
the multi-tape TM's next state, symbols to write, and head
movements. Then, it makes another pass (or multiple passes) over its
single tape to update the symbols on the respective content tracks
and move the head markers according to the multi-tape TM's rules.
While this simulation is slower (polynomially slower, but not
fundamentally less powerful), it proves equivalence.

2. Multi-Track Turing Machine:
○ Description: A multi-track TM has a single tape, but each tape cell is divided

into several "tracks" or channels. The tape head reads/writes all symbols on
all tracks simultaneously at a given cell.

○ Equivalence: This is trivially equivalent to a standard single-tape TM.
■ Simulation Idea: If a multi-track TM has k tracks, a single-tape TM

can treat each symbol on a tape cell as an ordered k-tuple of symbols.
For example, if a multi-track TM has symbols (a, x, P) on a cell,
the single-tape TM's tape alphabet can simply include (a, x, P) as
a single composite symbol. The transition function is then defined over
these composite symbols. No change in fundamental power.

3. Non-Deterministic Turing Machine (NTM):
○ Description: Unlike a deterministic TM, an NTM's transition function δ can

specify multiple possible next configurations for a given (state, symbol) pair. If
multiple choices exist, the NTM "forks" into parallel computational paths,
exploring all possibilities simultaneously. An NTM accepts if at least one of its
computational paths leads to an accept state.

○ Equivalence: A deterministic single-tape TM can simulate an NTM.
■ Simulation Idea: The simulating DTM systematically explores all

possible computation paths of the NTM using a breadth-first search
(BFS) strategy. It can use a multi-tape setup (which we know is
equivalent to a single-tape TM): one tape for the original input, one
tape to store the current configuration of the NTM being simulated,
and one tape to store a "list" of possible choices made so far (or
alternative configurations to explore). It systematically tries all
branches until it finds an accepting path or exhausts all possibilities.
While exponentially slower in worst-case time, it can still simulate any
NTM computation, demonstrating equivalence in terms of what can be
computed, not necessarily how fast. This is a crucial result, as it
shows non-determinism does not increase the power of TMs (unlike
with finite automata where NFA > DFA in terms of design
convenience, but not theoretical power, and with pushdown automata
where non-determinism does increase power).

4. Turing Machines with Stay-Option:
○ Description: The tape head can move Left, Right, or Stay (S) at the current

cell.
○ Equivalence: Easily simulated by a standard TM.

■ Simulation Idea: A "Stay" move can be simulated by two moves: one
move right (R) and then one move left (L). The symbols written/read
remain consistent. So, a transition δ(q,a)=(q′,b,S) can be replaced by
two transitions in the standard TM: δ(q,a)=(qintermediate ,b,R) and
δ(qintermediate ,X)=(q′,X,L) for all X∈Γ.

5. Turing Machines with Semi-Infinite Tape:
○ Description: The tape extends infinitely only to the right, having a fixed

leftmost cell.
○ Equivalence: A two-way infinite tape TM can be simulated by a semi-infinite

tape TM.
■ Simulation Idea: A semi-infinite tape TM can divide its single tape

into two conceptual tracks. One track simulates the original TM's right
half of the tape, and the other track simulates the original TM's left half
(but reversed, so the leftmost cell of the original left half is now on the
right side of the track, closest to the "fold"). The head of the
semi-infinite tape TM then needs to be able to "jump" between these
two tracks to simulate movement across the conceptual mid-point.
Each symbol in the semi-infinite tape's alphabet would be an ordered
pair of symbols, one for each track. When the original TM would move
left from its initial position, the simulating TM moves to the right on its
second track (the reversed left half).

These equivalences are profoundly important because they suggest that the concept of
"computability" is robust and independent of minor variations in the computational model.
They all converge on the same set of computable functions.

Church-Turing Hypothesis

The Church-Turing Hypothesis (also known as the Church-Turing Thesis) is a
fundamental, widely accepted, but unprovable assertion at the heart of computer science
and mathematics. It provides the crucial link between the informal, intuitive notion of an
"algorithm" or "effective procedure" and the formal, mathematical model of a Turing Machine.

The Hypothesis States:

"Any function that can be computed by an algorithm (an effective procedure) can be
computed by a Turing Machine."

What it means:

● Formalizing "Algorithm": Before Turing Machines, the concept of an "algorithm"
was intuitive but lacked a precise mathematical definition. Turing's work, along with
independent work by Alonzo Church on lambda calculus (another equivalent
computational model), provided this formal definition. The hypothesis proposes that
the Turing Machine (or any of its equivalent models) perfectly captures what an
"algorithm" truly is.

● The Limit of Computability: If the Church-Turing Hypothesis is true (and all
evidence strongly suggests it is), then the capabilities of a Turing Machine define the
ultimate limits of what can be computed by any form of computation, whether by a
human following a step-by-step procedure, a mechanical device, or any future
supercomputer. No matter how clever an algorithm you devise, if it cannot be
simulated by a Turing Machine, then it is not truly an algorithm in the sense of being
effectively computable.

● Universality: This hypothesis supports the idea of universal computation. If a Turing
Machine can simulate any algorithm, then a Universal Turing Machine (a TM that can
simulate any other TM given its description as input) can, in principle, compute
anything that any computer can compute. This is the theoretical basis for modern
programmable computers.

● Unprovable Nature: The Church-Turing Hypothesis is a hypothesis, not a theorem,
because the informal concept of "algorithm" cannot be mathematically defined. It's an
assertion that a formal model (Turing Machine) accurately captures an intuitive
concept (algorithm). We cannot logically prove it, but we can gather overwhelming
evidence for it by showing that all other proposed models of computation (lambda
calculus, recursive functions, random access machines, cellular automata, quantum
computers, etc.) are equivalent to Turing Machines.

Implications of the Church-Turing Hypothesis:

● Foundation of Computer Science: It underpins the entire field of theoretical
computer science. When we talk about what is "computable" or "uncomputable," we
are implicitly referring to what a Turing Machine can or cannot do.

● Impossibility Results: If a problem can be formally proven to be unsolvable by a
Turing Machine (e.g., the Halting Problem, which asks whether an arbitrary program
will halt on a given input), then the Church-Turing Hypothesis implies that no
algorithm whatsoever can solve that problem, regardless of how powerful future
computers become. This is the basis for proving absolute limits on computation.

● Practical Equivalence: It explains why all general-purpose programming languages
and computing machines are fundamentally equivalent in terms of what they can
compute (though they differ vastly in efficiency, ease of programming, etc.). A
program written in Python, C++, or Java can, in principle, be translated into a set of
Turing Machine instructions and simulated by a TM, and vice-versa.

The Church-Turing Hypothesis is a cornerstone that defines the very scope of computability,
allowing us to reason rigorously about what is computable and what is inherently beyond the
reach of any algorithm.

Decidability and Turing Recognizability

The power of Turing Machines allows us to classify problems (or more precisely, the
languages that represent those problems) into different categories based on whether a
Turing Machine can solve them and how it solves them. This leads to the fundamental
concepts of decidability and Turing recognizability.

We consider a language L to be a set of strings. A problem can be framed as a language
recognition task: "Does this input string belong to the set of strings defined by the problem?"

1. Turing Recognizable Languages (Recursively Enumerable Languages / RE):
○ A language L is Turing-recognizable (also known as recursively

enumerable or RE) if there exists a Turing Machine M such that for any input
string w:

■ If w∈L, then M halts in the qaccept state.
■ If w∈/L, then M either halts in the qreject state or runs forever (loops).

○ Intuition: For strings in the language, the TM will eventually say "yes"
(accept). For strings not in the language, it might say "no" (reject), or it might
never give an answer. This means we can list or "enumerate" all strings in the
language by systematically running the TM on all possible inputs.

○ Analogy: You send a detective to find a specific person. If the person exists,
the detective will eventually find them and report "found." If the person doesn't
exist, the detective might report "not found" (reject), or they might search
forever without success (loop).

2. Decidable Languages (Recursive Languages / R):
○ A language L is decidable (also known as recursive or R) if there exists a

Turing Machine M such that for any input string w:
■ If w∈L, then M halts in the qaccept state.
■ If w∈/L, then M halts in the qreject state.

○ Crucial Difference: A decidable language requires a Turing Machine that
always halts for every input, whether the input is in the language or not. It
provides a definite "yes" or "no" answer for every single input string.

○ Relationship: Every decidable language is also Turing-recognizable. (If a TM
always halts, it certainly halts when it accepts.) However, not all
Turing-recognizable languages are decidable.

○ Analogy: You ask a program to check if a number is prime. For any number,
the program will eventually give you a definitive "yes, it's prime" or "no, it's not
prime."

Key Differences and Importance:

● Halting: This is the core distinction. For decidable languages, the TM is guaranteed
to halt. For Turing-recognizable languages, the TM is only guaranteed to halt (and
accept) if the string is in the language; otherwise, it might loop.

● Algorithm vs. Procedure: A problem is decidable if there is an algorithm that
solves it (always halts). A problem is Turing-recognizable if there is a procedure
that solves it (may not halt for inputs not in the language). The term "algorithm" in
computer science usually implies a guaranteed halt.

● Practical Implications:
○ Decidable problems are those that computers can genuinely "solve" in a

finite amount of time for all valid inputs. Many practical problems in computer
science fall into this category (e.g., checking if a string matches a regular
expression, type-checking in a compiler, sorting an array).

○ Turing-recognizable problems are those for which we can write a program
that will confirm "yes" if the answer is "yes," but might get stuck if the answer
is "no." This is less ideal, but still represents a form of computability. The
classic example of a Turing-recognizable but undecidable language is the
Halting Problem. We can write a TM that halts and accepts if a given TM
halts on a given input, but we cannot write one that always halts and rejects if
it doesn't halt.

● Unrecognizable Languages: There exist languages that are not even
Turing-recognizable. This means there's no Turing Machine at all that can even
reliably say "yes" for strings in the language. These problems are considered
fundamentally uncomputable.

The hierarchy of languages, based on the power of the recognizing machine, places these
concepts in context:

● Regular Languages (recognized by Finite Automata) ⊂ Context-Free Languages
(recognized by Pushdown Automata) ⊂ Decidable Languages (recognized by TMs
that always halt) ⊂ Turing-Recognizable Languages (recognized by TMs that may
loop).

Solved Question 2: Decidability of the Language ADFA

Problem: Show that the language ADFA ={⟨D,w⟩∣D is a DFA and D accepts w} is decidable.
(Here, ⟨D,w⟩ represents an encoding of a DFA D and an input string w as a single string.)

Solution: To show that ADFA is decidable, we need to construct a Turing Machine M that
decides ADFA . This means M must accept if D accepts w, and M must reject if D does not
accept w, and importantly, M must always halt for any input ⟨D,w⟩.

Construction of Turing Machine M for ADFA :

The TM M will simulate the behavior of the given DFA D on the input string w.

1. Input Setup: M receives its input as a single string ⟨D,w⟩. This means D (its states,
alphabet, transitions, start state, accept states) and w are all encoded as symbols on

M's tape. M can use multiple tracks or work tapes to conceptually separate D's
description from w and its current state.

2. Simulation Steps:
○ Initialize DFA's State: M records the current state of D. Initially, this is D's

start state q0 .
○ Initialize DFA's Input Pointer: M keeps track of the current position in w that

D is reading. Initially, this is the first symbol of w.
○ Loop for each symbol in w: For each symbol in w (from left to right):

1. M reads the current symbol from w (at the current input pointer).
2. M looks up the transition in D's description:

δD (current_state_of_D,current_symbol_of_w).
3. M updates D's current state to the new state specified by δD .
4. M advances the input pointer to the next symbol in w.

○ Handle DFA halting (end of input): After M has processed all symbols in w:
1. M checks if the current state of D (after reading all of w) is one of D's

accept states.
2. If it is an accept state, M enters its own qaccept state and halts.
3. If it is not an accept state, M enters its own qreject state and halts.

Why M always halts:

● Finite Number of States: The DFA D has a finite number of states.
● Finite Input String: The input string w has a finite length.
● Deterministic Transitions: DFA D's transitions are deterministic; for each (state,

symbol) pair, there is exactly one next state.
● Fixed Number of Steps: M simulates exactly one step of D for each symbol in w.

Since w has a finite length, M will perform a finite number of simulation steps.
● Guaranteed Halting: Once all symbols of w are processed, M makes a final decision

based on D's final state and halts. There is no possibility of M looping indefinitely in
this simulation.

Therefore, since M correctly decides whether D accepts w and always halts, ADFA is a
decidable language. This example highlights how TMs can "understand" and execute the
rules of other computational models.

Closure Properties of Decidable and Recognizable Languages

Just as with regular and context-free languages, understanding the closure properties of
decidable and Turing-recognizable languages helps us understand their structural behavior
and limitations.

1. Closure Properties of Decidable Languages (Recursive Languages / R):

Decidable languages are robust and closed under most common set operations. This means
that if you perform these operations on languages that are known to be decidable, the
resulting language will also be decidable.

● Union: If L1 and L2 are decidable languages, then L1 ∪L2 is decidable.

○ Proof Idea (Construction): Given DTM M1 for L1 and DTM M2 for L2 (both
always halt). Construct a new DTM Munion that on input w:

1. Simulate M1 on w.
2. If M1 accepts w, then Munion accepts w. (Halt)
3. If M1 rejects w, then Munion simulates M2 on w.
4. If M2 accepts w, Munion accepts. (Halt)
5. If M2 rejects w, Munion rejects. (Halt) Since M1 and M2 are

guaranteed to halt for all inputs, Munion will always halt and correctly
decide whether w is in L1 or L2 (or both).

● Intersection: If L1 and L2 are decidable languages, then L1 ∩L2 is decidable.
○ Proof Idea (Construction): Given DTM M1 for L1 and DTM M2 for L2 .

Construct a new DTM Mintersection that on input w:
1. Simulate M1 on w.
2. If M1 rejects w, then Mintersection rejects w. (Halt)
3. If M1 accepts w, then Mintersection simulates M2 on w.
4. If M2 accepts w, Mintersection accepts. (Halt)
5. If M2 rejects w, Mintersection rejects. (Halt) Since M1 and M2 always

halt, Mintersection will always halt and correctly decide L1 ∩L2 .
● Complement: If L is a decidable language, then its complement L is decidable.

○ Proof Idea (Construction): Given DTM M for L. Construct a new DTM
Mcomplement that on input w:

1. Simulate M on w.
2. If M accepts w, Mcomplement changes its state to qreject and halts.
3. If M rejects w, Mcomplement changes its state to qaccept and halts.

Since M is a decider, it always halts. Therefore, Mcomplement will
always halt and correctly decide L. This is a very strong property,
reflecting the power of decidable languages.

● Concatenation: If L1 and L2 are decidable languages, then L1 L2 is decidable.
○ Proof Idea (Construction): Construct a DTM Mconcat that on input w:

1. If w is the empty string, check if ϵ∈L1 L2 . This is decidable by running
M1 on ϵ and M2 on ϵ. If M1 accepts ϵ and M2 accepts ϵ, then ϵ is in
L1 L2 . Accept or reject accordingly.

2. If w is non-empty, systematically try all possible ways to split w into
two substrings, w=xy, where x and y can be empty.

3. For each possible split (x,y):
■ Simulate M1 on x.
■ If M1 accepts x:

■ Then simulate M2 on y.
■ If M2 also accepts y, then Mconcat accepts w and halts.

4. If all possible splits (x,y) have been tried, and no combination of M1
accepting x and M2 accepting y was found, then Mconcat rejects w
and halts. Since w has a finite length, there are a finite number of
ways to split it. Since M1 and M2 are deciders, they always halt on
any input string (including empty strings). Therefore, Mconcat will
always halt.

● Kleene Star: If L is a decidable language, then L∗ is decidable.
○ Proof Idea (Construction): Construct a DTM Mstar that on input w:

1. If w=ϵ, accept (as ϵ is always in L∗ by definition).

2. If w is non-empty, systematically try all possible ways to partition w
into k non-empty substrings for all k from 1 to ∣w∣: w=w1 w2 …wk .

3. For each partition:
■ Simulate M (the decider for L) on each wi .
■ If M accepts all wi in that partition, then Mstar accepts w and

halts.
4. If all possible partitions have been tried and none resulted in all

substrings being accepted by M, then Mstar rejects w and halts. Since
w has a finite length, there are a finite number of ways to partition it.
Since M is a decider, it always halts. Therefore, Mstar will always halt.

2. Closure Properties of Turing Recognizable Languages (Recursively Enumerable
Languages / RE):

Turing-recognizable languages are also closed under several common operations, though
not as comprehensively as decidable languages. The key challenge here is that the
recognizing TM might loop for non-members.

● Union: If L1 and L2 are Turing-recognizable, then L1 ∪L2 is Turing-recognizable.
○ Proof Idea (Construction): Given TM M1 for L1 and TM M2 for L2 (which

may loop). Construct a new TM Munion that on input w:
1. Simulate M1 on w and M2 on w in parallel. This can be done by a

multi-tape TM that alternates steps between M1 's simulation and M2 's
simulation. For example, Munion would simulate one step of M1 , then
one step of M2 , then two steps of M1 , then two steps of M2 , and so on
(or more simply, one step of M1 , then one step of M2 , then one step of
M1 , etc.). This ensures both machines make progress.

2. If either M1 accepts w or M2 accepts w at any point, then Munion
immediately accepts w and halts. If w∈L1 ∪L2 , then w is in at least
one of the languages. The corresponding TM (M1 or M2) will
eventually accept, causing Munion to accept. If w∈/L1 ∪L2 , both M1
and M2 would either reject or loop, causing Munion to reject or loop.

● Intersection: If L1 and L2 are Turing-recognizable, then L1 ∩L2 is
Turing-recognizable.

○ Proof Idea (Construction): Construct a new TM Mintersection that on input
w:

1. Simulate M1 on w.
2. If M1 accepts w, then simulate M2 on w.
3. If M2 also accepts w, then Mintersection accepts w and halts. If

w∈L1 ∩L2 , then M1 will eventually accept and halt, allowing M2 to
run. Then M2 will also eventually accept and halt. So Mintersection
accepts. If w∈/L1 ∩L2 :

■ If w∈/L1 , M1 will either reject or loop, so Mintersection will
also reject or loop.

■ If w∈L1 but w∈/L2 , M1 will accept, but M2 will reject or loop,
so Mintersection will also reject or loop. This sequential
approach works for intersection because both machines must
accept.

● Concatenation: If L1 and L2 are Turing-recognizable, then L1 L2 is
Turing-recognizable.

○ Proof Idea (Construction): Construct a TM Mconcat that on input w:
1. Systematically generate all possible ways to split w into two substrings

x and y such that w=xy. (There are ∣w∣+1 such splits, including empty
x or y).

2. For each split (x,y):
■ Simulate M1 on x and M2 on y in parallel (interleaving their

execution steps).
■ If both M1 on x and M2 on y accept, then Mconcat accepts w

and halts.
3. If no such split leads to acceptance after trying all possibilities up to a

certain simulation depth, Mconcat continues searching (by trying more
simulation steps on the current splits, or moving to the next split if
current ones rejected/looped). If w∈L1 L2 , a correct split will
eventually be found and accepted by the parallel simulation. If
w∈/L1 L2 , Mconcat may loop or reject.

● Kleene Star: If L is a Turing-recognizable language, then L∗ is Turing-recognizable.
○ Proof Idea (Construction): Construct a TM Mstar that on input w:

1. If w=ϵ, accept.
2. If w is non-empty, systematically generate all possible partitions of w

into k non-empty substrings: w=w1 w2 …wk , for k from 1 to ∣w∣.
3. For each partition:

■ Simulate M (the recognizer for L) on all wi simultaneously in
parallel (interleaving their execution steps across multiple
tapes).

■ If M accepts all wi for a given partition, then Mstar accepts w
and halts. If w∈L∗, a correct partition will eventually be found
and verified by the parallel simulation, causing acceptance.

Non-Closure of Turing Recognizable Languages under Complement:

● Complement: If L is a Turing-recognizable language, its complement L is not
necessarily Turing-recognizable.

○ Crucial Result: This is a fundamental result in computability theory. A
language L is decidable if and only if both L AND its complement L are
Turing-recognizable.

○ Proof Idea (Demonstration):
■ Part 1: If L is decidable, then L and L are Turing-recognizable.

(This is straightforward: A decider for L is also a recognizer for L. And
a decider for L can be easily modified to be a decider for L by
swapping accept/reject states, making L also recognizable).

■ Part 2: If L and L are Turing-recognizable, then L is decidable.
■ Assume L is Turing-recognizable by M1 , and L is

Turing-recognizable by M2 .
■ Construct a new TM Mdecider that on input w:

■ Simulate M1 on w and M2 on w in parallel (e.g.,
alternating one step of M1 , then one step of M2).

■ If M1 accepts w, then Mdecider accepts w and halts.
■ If M2 accepts w, then Mdecider rejects w and halts.

■ Why it works and always halts: For any input string w, it
must either be in L or in L.

■ If w∈L, then M1 will eventually accept. Mdecider will
then accept and halt.

■ If w∈L, then M2 will eventually accept. Mdecider will
then reject and halt.

■ Since one of M1 or M2 is guaranteed to accept (and halt) for
any input w, Mdecider is guaranteed to halt for any input w.
Thus, Mdecider is a decider for L, proving L is decidable.

○ Consequence: Since we know there exist Turing-recognizable languages
that are not decidable (e.g., the Halting Problem, or any other undecidable
problem that is proven to be RE), it logically follows from the above result that
their complements cannot be Turing-recognizable. If they were, those
languages would be decidable, which contradicts their known undecidability.

This distinction in closure under complement is a cornerstone of understanding the hierarchy
of undecidable problems and the fundamental limits of computation. It means that for some
problems, we can write a program that confirms "yes" answers, but we can't write a program
that always confirms "no" answers.

Solved Question 3: The Halting Problem (Conceptual)

Problem: Define the Halting Problem and explain why it is undecidable.

Solution:

The Halting Problem is one of the most famous and fundamental problems in computer
science, proven to be undecidable by Alan Turing in 1936.

Definition: The Halting Problem (denoted HALTTM) is the problem of determining, for an
arbitrary Turing Machine M and an arbitrary input string w, whether M will halt (i.e.,
eventually stop, either accepting or rejecting) when run with input w.

Formally, the language representing the Halting Problem is: HALTTM ={⟨M,w⟩∣M is a Turing
Machine and M halts on input w}

Why it is Undecidable (Proof by Contradiction Sketch):

Assume, for the sake of contradiction, that the Halting Problem is decidable. This means
there exists a Turing Machine, let's call it H, that decides HALTTM . So, for any input ⟨M,w⟩:

● If M halts on w, H accepts ⟨M,w⟩.
● If M does not halt on w, H rejects ⟨M,w⟩. Crucially, H is a decider, so it always halts.

Now, let's construct a new Turing Machine, D, using H as a subroutine. Turing Machine D
operates as follows on input ⟨M⟩ (a description of a Turing Machine M):

1. D receives input ⟨M⟩.

2. D creates a new input pair ⟨M,⟨M⟩⟩. (This means M will be run on its own description
as input.)

3. D then simulates H on this new input ⟨M,⟨M⟩⟩.
4. Based on H's output:

○ If H accepts ⟨M,⟨M⟩⟩ (meaning M halts on ⟨M⟩), then D enters a state where it
loops forever.

○ If H rejects ⟨M,⟨M⟩⟩ (meaning M does not halt on ⟨M⟩), then D enters qaccept
and halts and accepts.

Now, let's analyze what happens when D is run on its own description, ⟨D⟩:

Consider D(⟨D⟩):

● Case 1: Assume D halts on input ⟨D⟩.
○ According to D's definition, if D halts on ⟨D⟩, it must be because H rejected

⟨D,⟨D⟩⟩.
○ But H rejecting ⟨D,⟨D⟩⟩ implies (by H's definition) that D does not halt on ⟨D⟩.
○ This is a contradiction: D halts AND D does not halt.

● Case 2: Assume D does not halt (loops) on input ⟨D⟩.
○ According to D's definition, if D loops on ⟨D⟩, it must be because H accepted

⟨D,⟨D⟩⟩.
○ But H accepting ⟨D,⟨D⟩⟩ implies (by H's definition) that D halts on ⟨D⟩.
○ This is a contradiction: D loops AND D halts.

In both cases, we reach a logical contradiction. Since our initial assumption (that HALTTM is
decidable, meaning H exists) leads to a contradiction, that assumption must be false.

Conclusion: Therefore, the Halting Problem is undecidable. No algorithm, no matter how
clever or powerful, can reliably determine whether an arbitrary program will halt on an
arbitrary input. This is a fundamental limit of computation.

	Module 7: Turing Machines and Computability
	Modeling Computation using Turing Machines (TM)
	Equivalent Models of Computation
	Church-Turing Hypothesis
	Decidability and Turing Recognizability
	Closure Properties of Decidable and Recognizable Languages

