
 

Module 7: Turing Machines and Computability 
This module represents a pivotal moment in our exploration of the theoretical limits of 
computation. Having studied finite automata (with no memory beyond their current state) and 
pushdown automata (with a single stack), we now introduce the Turing Machine (TM), a 
theoretical model of computation that is considered the most powerful and general model 
conceived. The Turing Machine provides a formal, abstract representation of an algorithm 
and serves as the bedrock for the modern theory of computability. We will meticulously 
define its components and operations, demonstrate its functionality with solved examples, 
discuss the profound implications of the Church-Turing Hypothesis, and delineate the 
crucial concepts of decidability and Turing recognizability, which define the boundaries of 
what computers can and cannot do. Finally, we will examine the closure properties of these 
language classes, illustrating with further examples where appropriate. 

Modeling Computation using Turing Machines (TM) 

While finite automata could model simple pattern recognition and pushdown automata could 
handle hierarchical, nested structures, both possessed inherent limitations related to 
memory. Finite automata had no auxiliary memory, and pushdown automata were restricted 
to a single, last-in-first-out (LIFO) stack. These limitations mean they cannot solve problems 
that require arbitrary amounts of sequential memory or the ability to read and rewrite 
anywhere in that memory. 

The Turing Machine (TM), conceived by Alan Turing in 1936, overcomes these limitations 
by introducing an infinitely long tape that serves as its memory. This simple yet powerful 
addition allows the TM to simulate any algorithmic process. It is not intended as a practical 
model for building computers, but rather as a theoretical abstraction to understand the 
fundamental capabilities and limitations of computation itself. 

A Turing Machine (TM) is formally defined as a 7-tuple (Q,Σ,Γ,δ,q0 ,qaccept ,qreject ), where: 

● Q (States): A finite, non-empty set of internal states. These states represent the TM's 
current configuration or phase of computation, similar to states in automata. 

○ Example: q_start, q_read, q_write, q_found_match. 
● Σ (Input Alphabet): A finite, non-empty set of input symbols. These are the symbols 

that can appear in the initial input string placed on the tape. 
○ Example: {0,1}, {a,b,c}. Crucially, the blank symbol _ is never part of the input 

alphabet. 
● Γ (Tape Alphabet): A finite, non-empty set of symbols that can be written onto the 

tape. This set includes all input symbols and a special blank symbol. 
○ Requirement: Σ⊆Γ. 
○ Special Symbol: _ (blank symbol). This symbol is a member of Γ but not Σ. It 

represents an empty cell on the tape. The tape is initially filled with blanks 
everywhere except where the input string is written. 

● δ (Transition Function): This is the core of the TM's operation. It dictates the TM's 
behavior at each step. Unlike DFAs or NFAs, the TM's transition depends on the 



 

current state and the symbol under the tape head. For a given (current state, tape 
symbol under head) pair, it specifies: 

○ A new state to transition to. 
○ A symbol to write onto the current tape cell (replacing the symbol just read). 
○ A direction to move the tape head (Left or Right). 
○ Formally, δ:Q×Γ→Q×Γ×{L,R} 

■ L means move the tape head one cell to the left. 
■ R means move the tape head one cell to the right. 

○ Deterministic: This definition describes a deterministic Turing Machine. For 
any given (state, symbol) pair, there is exactly one possible action. 

● q0  (Start State): The unique initial state from Q where the TM begins its 
computation. 

● qaccept  (Accept State): A designated state from Q. If the TM enters this state, it 
immediately halts and accepts the input string. 

● qreject  (Reject State): A designated state from Q. If the TM enters this state, it 
immediately halts and rejects the input string. 

○ Important: qaccept  and qreject  must be distinct states (qaccept =qreject ). If a 
TM reaches either of these states, it halts. If it never reaches either, it runs 
forever (loops). 

Components of a Basic Turing Machine: 

1. Tape: An infinitely long strip, divided into cells. Each cell can hold exactly one symbol 
from the tape alphabet Γ. The tape extends infinitely to the right (and often 
conceptualized as infinite to the left as well, or at least arbitrarily extendable). Initially, 
the input string occupies the leftmost portion of the tape, and all other cells are filled 
with the blank symbol _. 

2. Tape Head: A mechanism that can read a symbol from a cell, write a symbol to a 
cell, and move left or right one cell at a time. It always points to a single cell on the 
tape. 

3. Control Unit: The "brain" of the TM. It is in one of a finite number of states. Based 
on its current state and the symbol read by the tape head, it consults the transition 
function δ to decide: 

○ What symbol to write onto the tape. 
○ What direction to move the tape head. 
○ What its next internal state will be. 

Basic Operation (Step-by-Step Execution): 

1. Initialization: The input string is placed on the leftmost portion of the infinite tape. All 
other tape cells are filled with the blank symbol _. The tape head is positioned at the 
leftmost symbol of the input string. The control unit is in the start state q0 . 

2. Execution Cycle (Loop): The TM repeatedly performs the following actions: 
○ Read: The tape head reads the symbol currently in the cell it is pointing to. 
○ Consult Transition Function: The control unit takes its current state and the 

symbol just read as input to the transition function δ. 



 

○ Write, Move, Change State: Based on the output of 
δ(current_state,symbol_read)=(new_state,symbol_to_write,direction_to_move
): 

■ The symbol_to_write is written onto the current tape cell. 
■ The tape head moves one cell in the specified direction_to_move 

(L or R). 
■ The control unit transitions to the new_state. 

○ Check for Halting: If the new_state is qaccept  or qreject , the TM halts. 
3. Halting Conditions: 

○ Acceptance: If the TM enters state qaccept , it halts and the input string is 
considered accepted. 

○ Rejection: If the TM enters state qreject , it halts and the input string is 
considered rejected. 

○ Looping: If the TM never enters qaccept  or qreject , it continues to run 
indefinitely (loops). In this case, the input string is neither accepted nor 
rejected; it simply causes the machine to "hang." 

Solved Question 1: TM for L={0n1n∣n≥1} 

Problem: Design a Turing Machine that recognizes the language consisting of strings with 
an equal number of 0s followed by an equal number of 1s, where n≥1. Example strings: 01, 
0011, 000111. 

Strategy: The TM will repeatedly "check off" a 0 and a 1. 

1. Scan right, find the leftmost 0. Mark it with an X. 
2. Scan right past all 0s and Xs, find the leftmost 1. Mark it with a Y. 
3. If a 0 was found but no 1 (or vice versa), reject. 
4. Scan left to find the rightmost X. Move one cell right to find the first unmarked 

symbol. 
5. Repeat until all 0s and 1s are marked. 
6. After marking all 0s and 1s, scan the tape to ensure only Xs, Ys, and blanks remain 

(i.e., no unmatched 0s or 1s). If so, accept. 

Formal Definition: Q={q0 ,q1 ,q2 ,q3 ,q4 ,qaccept ,qreject } Σ={0,1} Γ={0,1,X,Y,_} q0 : Start state 
qaccept : Accept state qreject : Reject state 

Transition Function δ (Rules): 

● From q0  (Initial state, finding leftmost 0): 
○ δ(q0 ,0)=(q1 ,X,R) : If 0 is read, mark it X, move right to find a 1, go to q1 . 
○ δ(q0 ,Y)=(q4 ,Y,R) : If Y is read, it means all 0s have been matched and 

marked X. Now check if only Ys and blanks remain (i.e., balanced). Move 
right, go to q4 . 

○ δ(q0 ,_)=(qreject ,_,R) : If blank is read, it implies empty string or no 0s to start, 
which is not 0n1n for n≥1. Reject. 



 

○ δ(q0 ,1)=(qreject ,1,R) : Cannot start with 1. Reject. 
● From q1  (Found 0, now looking for 1): 

○ δ(q1 ,0)=(q1 ,0,R) : Skip over 0s. 
○ δ(q1 ,Y)=(q1 ,Y,R) : Skip over already marked 1s (Ys). 
○ δ(q1 ,1)=(q2 ,Y,L) : If 1 is read, mark it Y, move left to find the X (to return to 

start of next 0), go to q2 . 
○ δ(q1 ,_)=(qreject ,_,R) : If blank is read, found 0s but no matching 1s. Reject. 

● From q2  (Found 1, returning to find next 0): 
○ δ(q2 ,0)=(q2 ,0,L) : Skip over 0s while moving left. 
○ δ(q2 ,Y)=(q2 ,Y,L) : Skip over Ys while moving left. 
○ δ(q2 ,X)=(q0 ,X,R) : If X is read, found the marked 0, move right to start the 

next iteration (find next unmatched 0). Go to q0 . 
● From q3  (Error/Reject state - not explicitly used in this simplified direct path, 

implies implicit rejection if rule not defined): 
○ (Any other unlisted (state, symbol) pair from q0 ,q1 ,q2  implicitly leads to 

qreject  or causes the TM to halt if no transition is defined for that state-symbol 
pair) 

● From q4  (All 0s matched, verifying no 1s remain unmarked): 
○ δ(q4 ,Y)=(q4 ,Y,R) : Skip over Ys (marked 1s). 
○ δ(q4 ,_)=(qaccept ,_,R) : If blank is read, means all 0s and 1s were perfectly 

matched. Accept. 
○ δ(q4 ,0)=(qreject ,0,R) : Found an unmatched 0. Reject. 
○ δ(q4 ,1)=(qreject ,1,R) : Found an unmatched 1. Reject. 

Trace for input 0011: Tape content: _0011___ (head on first 0, state q0 ) 

1. (q0 ,0)→(q1 ,X,R) _X011___ (head on second 0, state q1 ) 
2. (q1 ,0)→(q1 ,0,R) _X011___ (head on first 1, state q1 ) 
3. (q1 ,1)→(q2 ,Y,L) _X0Y1___ (head on 0, state q2 ) 
4. (q2 ,0)→(q2 ,0,L) _X0Y1___ (head on X, state q2 ) 
5. (q2 ,X)→(q0 ,X,R) _X0Y1___ (head on 0, state q0 ) 
6. (q0 ,0)→(q1 ,X,R) _XXY1___ (head on Y, state q1 ) 
7. (q1 ,Y)→(q1 ,Y,R) _XXY1___ (head on 1, state q1 ) 
8. (q1 ,1)→(q2 ,Y,L) _XXYY___ (head on Y, state q2 ) 
9. (q2 ,Y)→(q2 ,Y,L) _XXYY___ (head on X, state q2 ) 
10. (q2 ,X)→(q0 ,X,R) _XXYY___ (head on Y, state q0 ) 
11. (q0 ,Y)→(q4 ,Y,R) _XXYY___ (head on Y, state q4 ) 
12. (q4 ,Y)→(q4 ,Y,R) _XXYY___ (head on _, state q4 ) 
13. (q4 ,_)→(qaccept ,_,R) Accept! 

This example clearly shows how the TM uses its tape to mark symbols and move back and 
forth to keep track of its computation, a capability beyond that of PDAs. 

Equivalent Models of Computation 



 

The simple, single-tape, deterministic Turing Machine described above is remarkably 
powerful. So powerful, in fact, that numerous other theoretical models of computation, 
seemingly more powerful or different in structure, have been shown to be equivalent to the 
basic Turing Machine. This means that any computation that can be performed by one of 
these alternative models can also be performed by a standard TM, and vice-versa. This 
robust equivalence lends significant weight to the Turing Machine as the definitive model of 
general computation. 

Here are some common equivalent models and why they don't surpass the basic TM: 

1. Multi-Tape Turing Machine: 
○ Description: Instead of one tape, a multi-tape TM has several independent 

tapes, each with its own read/write head. At each step, the control unit reads 
symbols from all heads, makes a transition, writes symbols on all tapes, and 
moves all heads independently. 

○ Equivalence: A single-tape TM can simulate a multi-tape TM. 
■ Simulation Idea: The single tape can be thought of as having multiple 

"tracks" for each of the multi-tape TM's tapes. For example, if a 
multi-tape TM has k tapes, the single tape could be divided into 2k 
tracks: k tracks for the content of each tape, and k tracks to mark the 
head positions on each of those k tapes. 

■ To simulate a step: The single-tape TM scans its tape from left to right, 
remembering the symbols under each of the k simulated heads and 
their positions (stored on a separate "head position" track or by 
marking). Once all k symbols are read, the single-tape TM determines 
the multi-tape TM's next state, symbols to write, and head 
movements. Then, it makes another pass (or multiple passes) over its 
single tape to update the symbols on the respective content tracks 
and move the head markers according to the multi-tape TM's rules. 
While this simulation is slower (polynomially slower, but not 
fundamentally less powerful), it proves equivalence. 

2. Multi-Track Turing Machine: 
○ Description: A multi-track TM has a single tape, but each tape cell is divided 

into several "tracks" or channels. The tape head reads/writes all symbols on 
all tracks simultaneously at a given cell. 

○ Equivalence: This is trivially equivalent to a standard single-tape TM. 
■ Simulation Idea: If a multi-track TM has k tracks, a single-tape TM 

can treat each symbol on a tape cell as an ordered k-tuple of symbols. 
For example, if a multi-track TM has symbols (a, x, P) on a cell, 
the single-tape TM's tape alphabet can simply include (a, x, P) as 
a single composite symbol. The transition function is then defined over 
these composite symbols. No change in fundamental power. 

3. Non-Deterministic Turing Machine (NTM): 
○ Description: Unlike a deterministic TM, an NTM's transition function δ can 

specify multiple possible next configurations for a given (state, symbol) pair. If 
multiple choices exist, the NTM "forks" into parallel computational paths, 
exploring all possibilities simultaneously. An NTM accepts if at least one of its 
computational paths leads to an accept state. 



 

○ Equivalence: A deterministic single-tape TM can simulate an NTM. 
■ Simulation Idea: The simulating DTM systematically explores all 

possible computation paths of the NTM using a breadth-first search 
(BFS) strategy. It can use a multi-tape setup (which we know is 
equivalent to a single-tape TM): one tape for the original input, one 
tape to store the current configuration of the NTM being simulated, 
and one tape to store a "list" of possible choices made so far (or 
alternative configurations to explore). It systematically tries all 
branches until it finds an accepting path or exhausts all possibilities. 
While exponentially slower in worst-case time, it can still simulate any 
NTM computation, demonstrating equivalence in terms of what can be 
computed, not necessarily how fast. This is a crucial result, as it 
shows non-determinism does not increase the power of TMs (unlike 
with finite automata where NFA > DFA in terms of design 
convenience, but not theoretical power, and with pushdown automata 
where non-determinism does increase power). 

4. Turing Machines with Stay-Option: 
○ Description: The tape head can move Left, Right, or Stay (S) at the current 

cell. 
○ Equivalence: Easily simulated by a standard TM. 

■ Simulation Idea: A "Stay" move can be simulated by two moves: one 
move right (R) and then one move left (L). The symbols written/read 
remain consistent. So, a transition δ(q,a)=(q′,b,S) can be replaced by 
two transitions in the standard TM: δ(q,a)=(qintermediate ,b,R) and 
δ(qintermediate ,X)=(q′,X,L) for all X∈Γ. 

5. Turing Machines with Semi-Infinite Tape: 
○ Description: The tape extends infinitely only to the right, having a fixed 

leftmost cell. 
○ Equivalence: A two-way infinite tape TM can be simulated by a semi-infinite 

tape TM. 
■ Simulation Idea: A semi-infinite tape TM can divide its single tape 

into two conceptual tracks. One track simulates the original TM's right 
half of the tape, and the other track simulates the original TM's left half 
(but reversed, so the leftmost cell of the original left half is now on the 
right side of the track, closest to the "fold"). The head of the 
semi-infinite tape TM then needs to be able to "jump" between these 
two tracks to simulate movement across the conceptual mid-point. 
Each symbol in the semi-infinite tape's alphabet would be an ordered 
pair of symbols, one for each track. When the original TM would move 
left from its initial position, the simulating TM moves to the right on its 
second track (the reversed left half). 

These equivalences are profoundly important because they suggest that the concept of 
"computability" is robust and independent of minor variations in the computational model. 
They all converge on the same set of computable functions. 

Church-Turing Hypothesis 



 

The Church-Turing Hypothesis (also known as the Church-Turing Thesis) is a 
fundamental, widely accepted, but unprovable assertion at the heart of computer science 
and mathematics. It provides the crucial link between the informal, intuitive notion of an 
"algorithm" or "effective procedure" and the formal, mathematical model of a Turing Machine. 

The Hypothesis States: 

"Any function that can be computed by an algorithm (an effective procedure) can be 
computed by a Turing Machine." 

What it means: 

● Formalizing "Algorithm": Before Turing Machines, the concept of an "algorithm" 
was intuitive but lacked a precise mathematical definition. Turing's work, along with 
independent work by Alonzo Church on lambda calculus (another equivalent 
computational model), provided this formal definition. The hypothesis proposes that 
the Turing Machine (or any of its equivalent models) perfectly captures what an 
"algorithm" truly is. 

● The Limit of Computability: If the Church-Turing Hypothesis is true (and all 
evidence strongly suggests it is), then the capabilities of a Turing Machine define the 
ultimate limits of what can be computed by any form of computation, whether by a 
human following a step-by-step procedure, a mechanical device, or any future 
supercomputer. No matter how clever an algorithm you devise, if it cannot be 
simulated by a Turing Machine, then it is not truly an algorithm in the sense of being 
effectively computable. 

● Universality: This hypothesis supports the idea of universal computation. If a Turing 
Machine can simulate any algorithm, then a Universal Turing Machine (a TM that can 
simulate any other TM given its description as input) can, in principle, compute 
anything that any computer can compute. This is the theoretical basis for modern 
programmable computers. 

● Unprovable Nature: The Church-Turing Hypothesis is a hypothesis, not a theorem, 
because the informal concept of "algorithm" cannot be mathematically defined. It's an 
assertion that a formal model (Turing Machine) accurately captures an intuitive 
concept (algorithm). We cannot logically prove it, but we can gather overwhelming 
evidence for it by showing that all other proposed models of computation (lambda 
calculus, recursive functions, random access machines, cellular automata, quantum 
computers, etc.) are equivalent to Turing Machines. 

Implications of the Church-Turing Hypothesis: 

● Foundation of Computer Science: It underpins the entire field of theoretical 
computer science. When we talk about what is "computable" or "uncomputable," we 
are implicitly referring to what a Turing Machine can or cannot do. 

● Impossibility Results: If a problem can be formally proven to be unsolvable by a 
Turing Machine (e.g., the Halting Problem, which asks whether an arbitrary program 
will halt on a given input), then the Church-Turing Hypothesis implies that no 
algorithm whatsoever can solve that problem, regardless of how powerful future 
computers become. This is the basis for proving absolute limits on computation. 



 

● Practical Equivalence: It explains why all general-purpose programming languages 
and computing machines are fundamentally equivalent in terms of what they can 
compute (though they differ vastly in efficiency, ease of programming, etc.). A 
program written in Python, C++, or Java can, in principle, be translated into a set of 
Turing Machine instructions and simulated by a TM, and vice-versa. 

The Church-Turing Hypothesis is a cornerstone that defines the very scope of computability, 
allowing us to reason rigorously about what is computable and what is inherently beyond the 
reach of any algorithm. 

Decidability and Turing Recognizability 

The power of Turing Machines allows us to classify problems (or more precisely, the 
languages that represent those problems) into different categories based on whether a 
Turing Machine can solve them and how it solves them. This leads to the fundamental 
concepts of decidability and Turing recognizability. 

We consider a language L to be a set of strings. A problem can be framed as a language 
recognition task: "Does this input string belong to the set of strings defined by the problem?" 

1. Turing Recognizable Languages (Recursively Enumerable Languages / RE): 
○ A language L is Turing-recognizable (also known as recursively 

enumerable or RE) if there exists a Turing Machine M such that for any input 
string w: 

■ If w∈L, then M halts in the qaccept  state. 
■ If w∈/L, then M either halts in the qreject  state or runs forever (loops). 

○ Intuition: For strings in the language, the TM will eventually say "yes" 
(accept). For strings not in the language, it might say "no" (reject), or it might 
never give an answer. This means we can list or "enumerate" all strings in the 
language by systematically running the TM on all possible inputs. 

○ Analogy: You send a detective to find a specific person. If the person exists, 
the detective will eventually find them and report "found." If the person doesn't 
exist, the detective might report "not found" (reject), or they might search 
forever without success (loop). 

2. Decidable Languages (Recursive Languages / R): 
○ A language L is decidable (also known as recursive or R) if there exists a 

Turing Machine M such that for any input string w: 
■ If w∈L, then M halts in the qaccept  state. 
■ If w∈/L, then M halts in the qreject  state. 

○ Crucial Difference: A decidable language requires a Turing Machine that 
always halts for every input, whether the input is in the language or not. It 
provides a definite "yes" or "no" answer for every single input string. 

○ Relationship: Every decidable language is also Turing-recognizable. (If a TM 
always halts, it certainly halts when it accepts.) However, not all 
Turing-recognizable languages are decidable. 

○ Analogy: You ask a program to check if a number is prime. For any number, 
the program will eventually give you a definitive "yes, it's prime" or "no, it's not 
prime." 



 

Key Differences and Importance: 

● Halting: This is the core distinction. For decidable languages, the TM is guaranteed 
to halt. For Turing-recognizable languages, the TM is only guaranteed to halt (and 
accept) if the string is in the language; otherwise, it might loop. 

● Algorithm vs. Procedure: A problem is decidable if there is an algorithm that 
solves it (always halts). A problem is Turing-recognizable if there is a procedure 
that solves it (may not halt for inputs not in the language). The term "algorithm" in 
computer science usually implies a guaranteed halt. 

● Practical Implications: 
○ Decidable problems are those that computers can genuinely "solve" in a 

finite amount of time for all valid inputs. Many practical problems in computer 
science fall into this category (e.g., checking if a string matches a regular 
expression, type-checking in a compiler, sorting an array). 

○ Turing-recognizable problems are those for which we can write a program 
that will confirm "yes" if the answer is "yes," but might get stuck if the answer 
is "no." This is less ideal, but still represents a form of computability. The 
classic example of a Turing-recognizable but undecidable language is the 
Halting Problem. We can write a TM that halts and accepts if a given TM 
halts on a given input, but we cannot write one that always halts and rejects if 
it doesn't halt. 

● Unrecognizable Languages: There exist languages that are not even 
Turing-recognizable. This means there's no Turing Machine at all that can even 
reliably say "yes" for strings in the language. These problems are considered 
fundamentally uncomputable. 

The hierarchy of languages, based on the power of the recognizing machine, places these 
concepts in context: 

● Regular Languages (recognized by Finite Automata) ⊂ Context-Free Languages 
(recognized by Pushdown Automata) ⊂ Decidable Languages (recognized by TMs 
that always halt) ⊂ Turing-Recognizable Languages (recognized by TMs that may 
loop). 

Solved Question 2: Decidability of the Language ADFA  

Problem: Show that the language ADFA ={⟨D,w⟩∣D is a DFA and D accepts w} is decidable. 
(Here, ⟨D,w⟩ represents an encoding of a DFA D and an input string w as a single string.) 

Solution: To show that ADFA  is decidable, we need to construct a Turing Machine M that 
decides ADFA . This means M must accept if D accepts w, and M must reject if D does not 
accept w, and importantly, M must always halt for any input ⟨D,w⟩. 

Construction of Turing Machine M for ADFA : 

The TM M will simulate the behavior of the given DFA D on the input string w. 

1. Input Setup: M receives its input as a single string ⟨D,w⟩. This means D (its states, 
alphabet, transitions, start state, accept states) and w are all encoded as symbols on 



 

M's tape. M can use multiple tracks or work tapes to conceptually separate D's 
description from w and its current state. 

2. Simulation Steps: 
○ Initialize DFA's State: M records the current state of D. Initially, this is D's 

start state q0 . 
○ Initialize DFA's Input Pointer: M keeps track of the current position in w that 

D is reading. Initially, this is the first symbol of w. 
○ Loop for each symbol in w: For each symbol in w (from left to right): 

1. M reads the current symbol from w (at the current input pointer). 
2. M looks up the transition in D's description: 

δD (current_state_of_D,current_symbol_of_w). 
3. M updates D's current state to the new state specified by δD . 
4. M advances the input pointer to the next symbol in w. 

○ Handle DFA halting (end of input): After M has processed all symbols in w: 
1. M checks if the current state of D (after reading all of w) is one of D's 

accept states. 
2. If it is an accept state, M enters its own qaccept  state and halts. 
3. If it is not an accept state, M enters its own qreject  state and halts. 

Why M always halts: 

● Finite Number of States: The DFA D has a finite number of states. 
● Finite Input String: The input string w has a finite length. 
● Deterministic Transitions: DFA D's transitions are deterministic; for each (state, 

symbol) pair, there is exactly one next state. 
● Fixed Number of Steps: M simulates exactly one step of D for each symbol in w. 

Since w has a finite length, M will perform a finite number of simulation steps. 
● Guaranteed Halting: Once all symbols of w are processed, M makes a final decision 

based on D's final state and halts. There is no possibility of M looping indefinitely in 
this simulation. 

Therefore, since M correctly decides whether D accepts w and always halts, ADFA  is a 
decidable language. This example highlights how TMs can "understand" and execute the 
rules of other computational models. 

Closure Properties of Decidable and Recognizable Languages 

Just as with regular and context-free languages, understanding the closure properties of 
decidable and Turing-recognizable languages helps us understand their structural behavior 
and limitations. 

1. Closure Properties of Decidable Languages (Recursive Languages / R): 

Decidable languages are robust and closed under most common set operations. This means 
that if you perform these operations on languages that are known to be decidable, the 
resulting language will also be decidable. 

● Union: If L1  and L2  are decidable languages, then L1 ∪L2  is decidable. 



 

○ Proof Idea (Construction): Given DTM M1  for L1  and DTM M2  for L2  (both 
always halt). Construct a new DTM Munion  that on input w: 

1. Simulate M1  on w. 
2. If M1  accepts w, then Munion  accepts w. (Halt) 
3. If M1  rejects w, then Munion  simulates M2  on w. 
4. If M2  accepts w, Munion  accepts. (Halt) 
5. If M2  rejects w, Munion  rejects. (Halt) Since M1  and M2  are 

guaranteed to halt for all inputs, Munion  will always halt and correctly 
decide whether w is in L1  or L2  (or both). 

● Intersection: If L1  and L2  are decidable languages, then L1 ∩L2  is decidable. 
○ Proof Idea (Construction): Given DTM M1  for L1  and DTM M2  for L2 . 

Construct a new DTM Mintersection  that on input w: 
1. Simulate M1  on w. 
2. If M1  rejects w, then Mintersection  rejects w. (Halt) 
3. If M1  accepts w, then Mintersection  simulates M2  on w. 
4. If M2  accepts w, Mintersection  accepts. (Halt) 
5. If M2  rejects w, Mintersection  rejects. (Halt) Since M1  and M2  always 

halt, Mintersection  will always halt and correctly decide L1 ∩L2 . 
● Complement: If L is a decidable language, then its complement L is decidable. 

○ Proof Idea (Construction): Given DTM M for L. Construct a new DTM 
Mcomplement  that on input w: 

1. Simulate M on w. 
2. If M accepts w, Mcomplement  changes its state to qreject  and halts. 
3. If M rejects w, Mcomplement  changes its state to qaccept  and halts. 

Since M is a decider, it always halts. Therefore, Mcomplement  will 
always halt and correctly decide L. This is a very strong property, 
reflecting the power of decidable languages. 

● Concatenation: If L1  and L2  are decidable languages, then L1 L2  is decidable. 
○ Proof Idea (Construction): Construct a DTM Mconcat  that on input w: 

1. If w is the empty string, check if ϵ∈L1 L2 . This is decidable by running 
M1  on ϵ and M2  on ϵ. If M1  accepts ϵ and M2  accepts ϵ, then ϵ is in 
L1 L2 . Accept or reject accordingly. 

2. If w is non-empty, systematically try all possible ways to split w into 
two substrings, w=xy, where x and y can be empty. 

3. For each possible split (x,y): 
■ Simulate M1  on x. 
■ If M1  accepts x: 

■ Then simulate M2  on y. 
■ If M2  also accepts y, then Mconcat  accepts w and halts. 

4. If all possible splits (x,y) have been tried, and no combination of M1  
accepting x and M2  accepting y was found, then Mconcat  rejects w 
and halts. Since w has a finite length, there are a finite number of 
ways to split it. Since M1  and M2  are deciders, they always halt on 
any input string (including empty strings). Therefore, Mconcat  will 
always halt. 

● Kleene Star: If L is a decidable language, then L∗ is decidable. 
○ Proof Idea (Construction): Construct a DTM Mstar  that on input w: 

1. If w=ϵ, accept (as ϵ is always in L∗ by definition). 



 

2. If w is non-empty, systematically try all possible ways to partition w 
into k non-empty substrings for all k from 1 to ∣w∣: w=w1 w2 …wk . 

3. For each partition: 
■ Simulate M (the decider for L) on each wi . 
■ If M accepts all wi  in that partition, then Mstar  accepts w and 

halts. 
4. If all possible partitions have been tried and none resulted in all 

substrings being accepted by M, then Mstar  rejects w and halts. Since 
w has a finite length, there are a finite number of ways to partition it. 
Since M is a decider, it always halts. Therefore, Mstar  will always halt. 

2. Closure Properties of Turing Recognizable Languages (Recursively Enumerable 
Languages / RE): 

Turing-recognizable languages are also closed under several common operations, though 
not as comprehensively as decidable languages. The key challenge here is that the 
recognizing TM might loop for non-members. 

● Union: If L1  and L2  are Turing-recognizable, then L1 ∪L2  is Turing-recognizable. 
○ Proof Idea (Construction): Given TM M1  for L1  and TM M2  for L2  (which 

may loop). Construct a new TM Munion  that on input w: 
1. Simulate M1  on w and M2  on w in parallel. This can be done by a 

multi-tape TM that alternates steps between M1 's simulation and M2 's 
simulation. For example, Munion  would simulate one step of M1 , then 
one step of M2 , then two steps of M1 , then two steps of M2 , and so on 
(or more simply, one step of M1 , then one step of M2 , then one step of 
M1 , etc.). This ensures both machines make progress. 

2. If either M1  accepts w or M2  accepts w at any point, then Munion  
immediately accepts w and halts. If w∈L1 ∪L2 , then w is in at least 
one of the languages. The corresponding TM (M1  or M2 ) will 
eventually accept, causing Munion  to accept. If w∈/L1 ∪L2 , both M1  
and M2  would either reject or loop, causing Munion  to reject or loop. 

● Intersection: If L1  and L2  are Turing-recognizable, then L1 ∩L2  is 
Turing-recognizable. 

○ Proof Idea (Construction): Construct a new TM Mintersection  that on input 
w: 

1. Simulate M1  on w. 
2. If M1  accepts w, then simulate M2  on w. 
3. If M2  also accepts w, then Mintersection  accepts w and halts. If 

w∈L1 ∩L2 , then M1  will eventually accept and halt, allowing M2  to 
run. Then M2  will also eventually accept and halt. So Mintersection  
accepts. If w∈/L1 ∩L2 : 

■ If w∈/L1 , M1  will either reject or loop, so Mintersection  will 
also reject or loop. 

■ If w∈L1  but w∈/L2 , M1  will accept, but M2  will reject or loop, 
so Mintersection  will also reject or loop. This sequential 
approach works for intersection because both machines must 
accept. 



 

● Concatenation: If L1  and L2  are Turing-recognizable, then L1 L2  is 
Turing-recognizable. 

○ Proof Idea (Construction): Construct a TM Mconcat  that on input w: 
1. Systematically generate all possible ways to split w into two substrings 

x and y such that w=xy. (There are ∣w∣+1 such splits, including empty 
x or y). 

2. For each split (x,y): 
■ Simulate M1  on x and M2  on y in parallel (interleaving their 

execution steps). 
■ If both M1  on x and M2  on y accept, then Mconcat  accepts w 

and halts. 
3. If no such split leads to acceptance after trying all possibilities up to a 

certain simulation depth, Mconcat  continues searching (by trying more 
simulation steps on the current splits, or moving to the next split if 
current ones rejected/looped). If w∈L1 L2 , a correct split will 
eventually be found and accepted by the parallel simulation. If 
w∈/L1 L2 , Mconcat  may loop or reject. 

● Kleene Star: If L is a Turing-recognizable language, then L∗ is Turing-recognizable. 
○ Proof Idea (Construction): Construct a TM Mstar  that on input w: 

1. If w=ϵ, accept. 
2. If w is non-empty, systematically generate all possible partitions of w 

into k non-empty substrings: w=w1 w2 …wk , for k from 1 to ∣w∣. 
3. For each partition: 

■ Simulate M (the recognizer for L) on all wi  simultaneously in 
parallel (interleaving their execution steps across multiple 
tapes). 

■ If M accepts all wi  for a given partition, then Mstar  accepts w 
and halts. If w∈L∗, a correct partition will eventually be found 
and verified by the parallel simulation, causing acceptance. 

Non-Closure of Turing Recognizable Languages under Complement: 

● Complement: If L is a Turing-recognizable language, its complement L is not 
necessarily Turing-recognizable. 

○ Crucial Result: This is a fundamental result in computability theory. A 
language L is decidable if and only if both L AND its complement L are 
Turing-recognizable. 

○ Proof Idea (Demonstration): 
■ Part 1: If L is decidable, then L and L are Turing-recognizable. 

(This is straightforward: A decider for L is also a recognizer for L. And 
a decider for L can be easily modified to be a decider for L by 
swapping accept/reject states, making L also recognizable). 

■ Part 2: If L and L are Turing-recognizable, then L is decidable. 
■ Assume L is Turing-recognizable by M1 , and L is 

Turing-recognizable by M2 . 
■ Construct a new TM Mdecider  that on input w: 

■ Simulate M1  on w and M2  on w in parallel (e.g., 
alternating one step of M1 , then one step of M2 ). 



 

■ If M1  accepts w, then Mdecider  accepts w and halts. 
■ If M2  accepts w, then Mdecider  rejects w and halts. 

■ Why it works and always halts: For any input string w, it 
must either be in L or in L. 

■ If w∈L, then M1  will eventually accept. Mdecider  will 
then accept and halt. 

■ If w∈L, then M2  will eventually accept. Mdecider  will 
then reject and halt. 

■ Since one of M1  or M2  is guaranteed to accept (and halt) for 
any input w, Mdecider  is guaranteed to halt for any input w. 
Thus, Mdecider  is a decider for L, proving L is decidable. 

○ Consequence: Since we know there exist Turing-recognizable languages 
that are not decidable (e.g., the Halting Problem, or any other undecidable 
problem that is proven to be RE), it logically follows from the above result that 
their complements cannot be Turing-recognizable. If they were, those 
languages would be decidable, which contradicts their known undecidability. 

This distinction in closure under complement is a cornerstone of understanding the hierarchy 
of undecidable problems and the fundamental limits of computation. It means that for some 
problems, we can write a program that confirms "yes" answers, but we can't write a program 
that always confirms "no" answers. 

Solved Question 3: The Halting Problem (Conceptual) 

Problem: Define the Halting Problem and explain why it is undecidable. 

Solution: 

The Halting Problem is one of the most famous and fundamental problems in computer 
science, proven to be undecidable by Alan Turing in 1936. 

Definition: The Halting Problem (denoted HALTTM ) is the problem of determining, for an 
arbitrary Turing Machine M and an arbitrary input string w, whether M will halt (i.e., 
eventually stop, either accepting or rejecting) when run with input w. 

Formally, the language representing the Halting Problem is: HALTTM ={⟨M,w⟩∣M is a Turing 
Machine and M halts on input w} 

Why it is Undecidable (Proof by Contradiction Sketch): 

Assume, for the sake of contradiction, that the Halting Problem is decidable. This means 
there exists a Turing Machine, let's call it H, that decides HALTTM . So, for any input ⟨M,w⟩: 

● If M halts on w, H accepts ⟨M,w⟩. 
● If M does not halt on w, H rejects ⟨M,w⟩. Crucially, H is a decider, so it always halts. 

Now, let's construct a new Turing Machine, D, using H as a subroutine. Turing Machine D 
operates as follows on input ⟨M⟩ (a description of a Turing Machine M): 

1. D receives input ⟨M⟩. 



 

2. D creates a new input pair ⟨M,⟨M⟩⟩. (This means M will be run on its own description 
as input.) 

3. D then simulates H on this new input ⟨M,⟨M⟩⟩. 
4. Based on H's output: 

○ If H accepts ⟨M,⟨M⟩⟩ (meaning M halts on ⟨M⟩), then D enters a state where it 
loops forever. 

○ If H rejects ⟨M,⟨M⟩⟩ (meaning M does not halt on ⟨M⟩), then D enters qaccept  
and halts and accepts. 

Now, let's analyze what happens when D is run on its own description, ⟨D⟩: 

Consider D(⟨D⟩): 

● Case 1: Assume D halts on input ⟨D⟩. 
○ According to D's definition, if D halts on ⟨D⟩, it must be because H rejected 

⟨D,⟨D⟩⟩. 
○ But H rejecting ⟨D,⟨D⟩⟩ implies (by H's definition) that D does not halt on ⟨D⟩. 
○ This is a contradiction: D halts AND D does not halt. 

● Case 2: Assume D does not halt (loops) on input ⟨D⟩. 
○ According to D's definition, if D loops on ⟨D⟩, it must be because H accepted 

⟨D,⟨D⟩⟩. 
○ But H accepting ⟨D,⟨D⟩⟩ implies (by H's definition) that D halts on ⟨D⟩. 
○ This is a contradiction: D loops AND D halts. 

In both cases, we reach a logical contradiction. Since our initial assumption (that HALTTM  is 
decidable, meaning H exists) leads to a contradiction, that assumption must be false. 

Conclusion: Therefore, the Halting Problem is undecidable. No algorithm, no matter how 
clever or powerful, can reliably determine whether an arbitrary program will halt on an 
arbitrary input. This is a fundamental limit of computation. 
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